ÉTUDE THERMODYNAMIQUE DE LA COMPLEXATION DE L'ARGENT PAR LA PIPÉRAZINE ET QUELQUES-UNS DE SES DÉRIVÉS EN MILIEU AQUEUX

K. HOUNGBOSSA, G. BERTHON ET O. ENEA

Laboratoire de Thermodynamique Chimique et Électrochimie de l'Université, 40, Avenue du Recteur Pineau, 86022 Poitiers (France) (Reçu le 20 octobre 1972)

ABSTRACT

The stability constants of the complexes formed by Ag^+ ion with piperazine and its 2-methyl-, N-methyl-, and N-phenyl-derivatives were determined in aqueous 0.1 *M* KNO₃ solution at 25°C, by means of the corresponding metal-complex electrodes.

The direct calorimetric study of these reactions in the same conditions of temperature and medium made it possible to calculate the standard enthalpies and standard entropies of formation of the complexes.

On the basis of a comparison of all the thermodynamic functions of these systems, the ability of each ligand to coordinate is discussed.

RÉSUMÉ

Les constantes de stabilité des complexes que forme l'ion Ag^+ avec la pipérazine et ses dérivés 2-méthylpipérazine, N-méthyl-pipérazine et N-phénylpipérazine ont été établies en solution aqueuse de KNO₃ 0,1 *M* à 25°C, par l'intermédiaire d'électrodes métal-complexes correspondantes.

L'étude calorimétrique directe de ces réactions, dans les mêmes conditions de température et de milieu, a ensuite permis de calculer les enthalpies standard et les entropies standard de formation de chacun des complexes mis en évidence.

La comparaison de l'ensemble des grandeurs thermodynamiques de chaque système permet de discuter l'aptitude à la complexation de chacun des coordinats considérés.

INTRODUCTION

Dans le cadre général d'une étude sur les aptitudes à la complexation des coordinats organiques¹⁻⁵, et plus spécialement à la suite des récents travaux que nous avons effectués sur les protonations de la pipérazine, ainsi que ses dérivés 2-méthylpipérazine, N-méthylpipérazine et N-phénylpipérazine⁶, nous comparons ici les complexations de l'argent par ces derniers coordinats, sur la base des grandeurs thermodynamiques standard ΔG_n^0 , ΔH_n^0 , ΔS_n^0 correspondantes.

Ce travail sollicite la mise en œuvre de deux techniques distinctes :

(1) Pour la détermination des constantes de stabilité (dont sont issues les enthalpies libres standard de formation) des divers complexes mis en évidence, la statopotentiométrie est tout d'abord utilisée, avec, comme électrodes indicatrices, des électrodes métal-complexes de type $Ag/[Ag(A)_n]^+$, A, où A représente le coordinat considéré.

Des mesures simultanées de pH sont en outre nécessaires au calcul des concentrations en coordinat réellement à l'équilibre, déduction faite des quantités engagées avec l'ion H⁺.

(2) Au moyen d'un programme d'ordinateur approprié⁷, la calorimétrie directe permet ensuite de calculer l'enthalpie standard de formation de chacun des complexes.

Là encore, des mesures de pH dans des conditions de concentrations globales rigoureusement identiques à celles employées dans le calorimètre, sont nécessaires pour déterminer les quantités de chaleur effectivement dues aux seules réactions de complexation.

Enfin, la comparaison des enthalpies libres et des enthalpies ainsi obtenues, comme celle des entropies qui s'en déduisent, permet de discuter l'influence de la nature et de la position du groupement substitué sur l'aptitude à la complexation de chacun des coordinats.

APPAREILLAGE ET PRÉCISION

Les mesures potentiométriques ont été effectuées au moyen d'un « Research pH meter » Beckman No. 101901, dont la précision absolue de lecture est de $\pm 0,05$ mV, avec des électrodes Beckman, à calomel type No. 4970, à argent type No. 392661 D 7 et de verre type No. 41263.

Un thermostat W.T.W. « Thermoboy » a réglé la température des cellules à $25\pm0,05$ °C.

Les mesures calorimétriques ont aussi été faites à 25 °C, au moyen d'un ensemble de titrage calorimétrique de précision LKB 8700-2, dont les caractéristiques techniques ont été décrites dans nos publications antérieures^{1,2}.

Les produits utilisés étaient de marque Aldrich pour les coordinats, Prolabo pour le nitrate d'argent et Merck pour le nitrate de potassium, tous de qualités pour analyses.

Les additions de réactif dans le calorimètre ont été effectuées au moyen d'une burette à piston Prolabo à lecture numérique, thermostatée à $25\pm0,1$ °C, de précision absolue $\pm0,001$ ml.

Le nitrate de potassium de concentration 0,1 M a été uniformément utilisé comme électrolyte support dans toutes nos expériences.

Les calculs ont été effectués sur ordinateur IBM 1620 au Centre de Calcul de l'Université de Poitiers.

CALCUL DES CONSTANTES DE STABILITÉ DES COMPLEXES

L'influence de la formation de complexes de type $[Ag(A)_n]^+$ sur l'équilibre électrochimique de l'électrode d'argent a été évaluée en mesurant les écarts de tensions réversibles entre cellules couplées de type :

(I) $Ag|Ag^+$, KNO_3 (0,1 *M*)|| KNO_3 (sat)||KCl (sat)| Hg_2Cl_2-Hg (II) $Ag|[Ag(A)_n]^+$, A, KNO_3 (0,1 *M*)|| KNO_3 (sat)||KCl (sat)| Hg_2Cl_2-Hg (1)

dans lequelles A représentait successivement la pipérazine, la 2-méthylpipérazine, la N-méthylpipérazine et la N-phénylpipérazine.

Dans un cas de ce genre, il suffit généralement, lorsque le pH de la solution d'une cellule de type (I, II) est suffisamment distant du logarithme de la constante de première protonation du coordinat considéré (pH-log $K_1 \ge 3$), d'introduire dans (1,I) et (1,II) des concentrations globales d'ion argent négligeables en regard de celles du coordinat dans (1,II) pour que ces dernières soient assimilables aux valeurs d'équilibre⁸.

Cependant, lorsque log K_1 , avec

$$K_{1} = \frac{[AH^{+}]}{[A] \cdot [H^{+}]}$$
(2)

est relativement élevée, le pH de la solution en est trop voisin pour que l'on puisse négliger la proportion de coordinat engagée avec l'ion H^+ .

Il faut alors considérer l'égalité exacte

$$C_{\mathbf{A}} = [\mathbf{A}] + \bar{n} \cdot C_{\mathbf{B}} + [\mathbf{A}\mathbf{H}^+] \tag{3}$$

où C_A et C_B représentent les concentrations globales respectives du coordinat et de l'ion argent et \bar{n} le degré de formation du système considéré.

Dans les conditions normales d'application des électrodes métal-complexes $(C_A \gg C_B)$, la relation précédente se simplifie toutefois en :

$$C_{\mathsf{A}} = [\mathsf{A}] + [\mathsf{A}\mathsf{H}^+] \tag{4}$$

Les valeurs des concentrations [A] réellement à l'équilibre ont donc été ici obtenues par l'intermédiaire de la mesure du pH des solutions dans les cellules (1,II), en résolvant le système correspondant de deux équations [(2) et (4)] à deux inconnues ([AH⁺] et [A]).

Trois séries de mesures ont été faites pour chaque système, les concentrations globales initiales d'ion argent ayant été égales à $2 \times 10^{-5} M$ dans les cellules (1,I) et (1,II) tandis que celles des coordinats variaient entre $2 \times 10^{-3} M$ et $15 \times 10^{-3} M$ environ dans les cellules (1,II), au cours de chaque expérience.

Le pH a été mesuré à chaque addition de coordinat dans (1,II) au moyen de la cellule :

E.V.
$$|H^+$$
, AH^+ , AH_2^{2+} , $KNO_3(0, 1 M) || KNO_3(sat) || KCl(sat) || Hg_2Cl_2 - Hg$ (5)

Le Tableau I consigne successivement pour chaque système, les concentrations globales de coordinat, les pH, les concentrations de coordinat à l'équilibre et les écarts ΔE entre tensions réversibles mesurées sur les cellules de type (1,I) et (1,II), lors d'une série de déterminations prise comme exemple parmi trois.

TABLEAU 1

MESURES POTENTIOMÉTRIQUES : DONNÉES EXPÉRIMENTALES POUR LE CALCUL DES CONSTANTES DE STABILITÉ DES COMPLEXES

Système Ag-p				Système Ag-2-mp				
$\frac{C_A \times 10^3}{(mol \ l^{-1})}$	pН	$[A] \times 10^{3}$ (mol I^{-1})	∆E (mV)	$C_A \times 10^3$ (mol I^{-1})	pН	$[A] \times 10^{3}$ (mol l^{-1})	∆E (mV)	
2,798	10,43	2,293	63,20	1,846	10,28	1,254	55,80	
3,661	10,48	3,066	73,95	2,717	10,35	2.307	70,15	
4,494	10,52	3,817	82,85	3,555	10,39	3,058	81,40	
5,297	10,55	4,540	90,20	4,363	10,41	3,781	90,15	
6,071	10,57	5,242	96,35	5,143	10,44	4,488	97,30	
6,818	10,59	5,915	101,50	5,894	10,45	5,165	103,45	
7,541	10,60	6,566	106,25	6,620	10,46	5,820	108,80	
8,239	10,60	7,173	110,20	7,322	10,47	6,459	113,30	
8,914	10,60	7,761	114,00	8,000	10,48	7,068	117,30	
10,814	10,60	9,414	122,55	8,655	10,48	7,647	121,10	
11,408	10,60	9,932	125,25	9,290	10,48	7,817	124,35	
11,985	10,60	10,435	127,55	9,904	10,49	8,774	127,45	
12,544	10,60	10,921	129,80	10,499	10,49	9,309	130,50	
13,086	10,60	11,393	132,00	11,076	10,49	9,820	132,45	
13,613	10,60	11,852	133,60	11,636	10,50	10,325	134,80	
14,124	10,60	12,297	135,55					
Système Ag-N-mp				Système Ag-N-pp				
1.860	9.93	1.627	27.05	1.923	9.88	1.799	38.60	
5.183	10.08	4,704	56.15	2,830	9.96	2,679	51,50	
5,940	10.09	5.403	61.90	3,704	10.02	3,529	62.20	
6.672	10.11	6.093	66.30	4,545	10.06	4,349	70.25	
7.379	10.12	6.756	69.80	5.357	10.09	5,140	77,15	
8.062	10.14	7,397	73,40	6,140	10,10	5,898	83,40	
8,723	10,14	8,003	76,35	6,900	10,11	6,633	89,00	
9,362	10,14	8,590	79,55	7,627	10,12	7,342	93,15	
9,982	10,14	9,159	81,90	8,333	10,14	8,031	97,50	
10,581	10,14	9,708	84,30	9,016	10,15	8,691	100,70	
11,163	10,14	10,242	86,45	10,937	10,16	10,551	109,85	
11,727	10,14	10,759	88,50	11,538	10,17	11,136	112,65	
12,275	10,14	11,262	90,35	12,687	10,17	12,255	117,30	
12,805	10,14	11,749	92,00	13,235	10,17	12,785	119,70	
13,320	10,14	12,221	93,75	13,768	10,17	13,299	121,30	
13,822	10,14	12,682	95,25	14,286	10,17	13,799	123,35	

Les constantes globales de stabilité des complexes mis en évidence, calculées par la méthode de Leden, sont consignées dans le Tableau 2.

$(\mu = 0, 1 M; 25^{\circ}C)$								
ème Ag-N-pp								

TABLEAU 2 CONSTANTES DE STABILITÉ DES COMPLEXES MIS EN ÉVIDENCE $(\mu = 0, 1 M; 25 °C)$

L'incertitude absolue les affectant est de l'ordre de $\pm 0,02$ unité logarithmique.

CALCUL DES ENTHALPIES DE FORMATION DES COMPLEXES

Les enthalpies standard de formation des complexes considérés ont été calculées une première fois au moyen de l'isochore de Van t'Hoff, d'après les constantes de stabilité déterminées à diverses températures entre 20°C et $40^{\circ}C^{9}$.

Les incertitudes résultantes étant de l'ordre des variations attendues d'un coordinat à l'autre, l'interprétation de ces grandeurs s'est avérée délicate, sinon impossible.

C'est pour cette raison que l'étude calorimétrique directe de ces réactions a été entreprise, bien que la précipitation du premier complexe, mélangé avec de l'oxyde d'argent¹⁰, la complique. L'utilisation de concentrations suffisamment basses pour que le produit de solubilité ne soit pas atteint, tout en conservant une bonne précision, nous a cependant été possible au moyen de l'ensemble calorimétrique LKB 8700-2.

Les concentrations en coordinat à l'équilibre ont été calculées en tenant compte de la protonation de cette espèce, au moyen du programme APH⁷. De même, les

TABLEAU 3

MESURES CALORIMÉTRIQUES: DONNÉES EXPÉRIMENTALES DU SYSTÈME Ag-p

V (mD	$C_{A} \times 10^{3}$	$C_B \times 10^3$	$[H^+] \times 10^{10}$	Q (cal)	$\overline{\Delta H}$	\overline{JH}_{calc}
(114)	(11011)		(morr)	((u))		
96	1,979	0,5208	0,507	0,3076	6153	6175
97	1,959	1,0309	0,700	0,5171	5171	5179
98	1,939	1,5306	0,970	0,6490	4327	4309
99	1,919	2,0202	1,175	0,7304	3652	3668
100	1,900	2,5000	1,462	0,7857	3143	3151
101	1,881	2,9703	1,862	0,8226	2742	2729
95,5	19,895	0,2618	1,122	0,2507	10030	10032
96	19,792	0,5208	1,188	0,5012	10025	10018
97	19,588	1,0309	1,288	0,9991	9991	9989
98	19,388	1.5306	1,413	1,4955	9970	9956
99	19,192	2,0202	1,528	1,9840	9920	9919
100	19,000	2,5000	1,660	2,4717	9887	9878
101	18.812	2.9703	1,738	2,9523	9841	9834

chaleurs mesurées Q ont été corrigées non seulement des chaleurs de dilution et de formation (ou dissociation) de l'eau, mais aussi de celles fournies par la protonation (ou déprotonation) du coordinat.

Signalons en outre que le milieu basique dans lequel nous avons opéré n'autorisait pas la formation du complexe mixte de type $(Ag-A-H)^{++}$, mis en évidence par Schwarzenbach et ses collaborateurs¹¹.

Les Tableaux 3, 4, 5 et 6 consignent successivement le volume de la solution, les concentrations globales de coordinat et de métal, la concentration en ion H^+ à l'équilibre, la chaleur corrigée et l'enthalpie moyenne de formation de chaque système pour les coordinats p, 2-mp, N-mp et N-pp respectivement^{*}.

TABLEAU 4 MESURES CALORIMÉTRIQUES: DONNÉES EXPÉRIMENTALES DU SYSTÈME Ag-2-mp

V (mĺ)	$C_A \times 10^3$ (mol l^{-1})	$C_B \times 10^3$ (mol l^{-1})	$[H^+] \times 10^{11}$ (mol l^{-1})	Q (cal)	∆H (cal mol ⁻¹)	$\frac{\overline{\Delta H}_{celc}}{(cal \ mol^{-1})}$
96	1,979	0,5208	4,519	0,3265	6531	6525
97	1,959	1,0309	5,012	0,5447	5447	5623
98	1,939	1,5306	6,918	0,7170	4780	4733
99	1,919	2,0202	9,550	0,8006	4003	3997
100	1,900	2,5000	10,230	0,8742	3497	3468
101	1,881	2,9703	11,750	0,9099	3033	3037
96	19,792	0,5208	1,084	0,4872	9745	9727
97	19,588	1,0309	1,148	0,9733	9733	9703
98	19,388	1,5306	1,230	1,4547	9698	9676
99	19,192	2,0202	1,349	1,9318	9659	9646
100	19,000	2,5000	1,479	2,4112	9645	9612
101	18,812	2,9703	1,622	2,8797	9599	9574

TABLEAU 5

MESURES CALORIMÉTRIQUES: DONNÉES EXPÉRIMENTALES DU SYSTÈME Ag-N-mp

V (ml)	$C_A \times 10^3$ (mol l^{-1})	$C_B \times 10^3$ (mol l^{-1})	$[H^+] \times 10^{11}$ (mol I^{-1})	Q (cal)	$\frac{\overline{\Delta H}}{(cal \ mol^{-1})}$	$\overline{\Delta H}_{celc}$ (cal mol ⁻¹)
	<u></u>					
96	1,979	0,5208	9,333	0,2265	4531	4555
97	1,959	1,0309	12,590	0,4011	4011	4010
98	1,939	1,5306	16,790	0,5320	3547	3519
99	1,919	2,0202	29,510	0,6048	3024	3020
100	1,900	2,5000	39,810	0,6595	2638	2649
95	19,792	0,5208	1,738	0,4402	8804	8807
97	19,588	1,0309	1,862	0,8788	8788	8771
98	19,388	1,5306	1,972	1,3095	8730	8730
99	19,192	2,0202	2,089	1,7362	8681	8691
100	19,000	2,5000	2,239	2,1612	8645	8646

*Abrévations : j = pipérazine; 2-mp =: 2-méthylpipérazine; N-mp = N-méthylpipérazine; N-pp = Nphénylpipérazine.

TABLEAU 6

MESURES CALORIMÉTRIQUES : DONNÉES EXPÉRIMENTALES DU SYSTÈME Ag-N-pp

V (ml)	$C_A \times 10^3$ (mol l^{-1})	$C_B \times 10^3$ (mol l^{-1})	[H ⁺]×10 ¹¹ (mol l ⁻¹)	Q (cal)	∆H (cal mol ⁻¹)	<i>∆H_{calc}</i> (cal mol ⁻¹)
96	1,979	0,5208	3,548	0,2400	4801	4813
97	1,959	1,0309	4,677	0,3880	3880	3871
9 8	1,939	1,5306	6,457	0,4715	3142	3147
99	1,919	2,0202	11,220	0,5048	2524	2514
100	1,900	2,5000	16,220	0,5180	2072	2077
96	19,792	0,5208	0,302	0,5027	10054	10054
97	19,588	1,0309	0,318	1,0015	10015	10019
98	19,388	1,5306	0,337	1,4970	9980	9980
99	19,192	2.0202	0.363	1.9866	9933	9936
100	19,000	2,5000	0,386	2,4742	9987	9886

Le Tableau 7 rassemble les enthalpies standard calculées par le programme CALOR 1⁷ (affectées de leurs écarts type), les enthalpies libres standard et les entropies standard correspondantes.

TABLEAU 7

GRANDEURS THERMODYNAMIQUES DE COMPLEXATION $(\mu = 0, 1 M; 25 °C)$

	Système Ag-p	Système Ag-2-mp	Système Ag-N-mp	Système Ag-N-pp
$-\Delta G_{1}^{0}$ (kcal mol ⁻¹)	4,55	4,70	4,00	3,99
$-\Delta G_{1,2}^{0}$ (kcal mol ⁻¹)	3,70	3,74	3,18	3,85
$-\Delta G_2^0$ (kcal mol ⁻¹)	8,25	8,44	7,18	7,84
$-\Delta H_1^0$ (kcal mol ⁻¹)	$6,410 \pm 0,011$	$6,285 \pm 0,040$	$5,575 \pm 0,016$	$5,349 \pm 0,013$
$-\Delta H_{1,2}^0$ (kcal mol ⁻¹)	4,038	3,810	3,970	5,181
$-\Delta H_2^0$ (kcal mol ⁻¹)	$10,448 \pm 0,021$	$10,095 \pm 0,075$	9,545±0,032	$10,530 \pm 0,018$
$-\Delta S_1^0$ (cal deg ⁻¹ mol ⁻¹)	6,2	5,3	5,3	4,6
$-\Delta S_{1,2}^{0}$ (cal deg ⁻¹ mol ⁻¹)	1,2	0,2	2,6	4,4
$-\Delta S_2^0$ (cal deg ⁻¹ mol ⁻¹)	7,4	5,5	7,9	9,0

Notons que ces résultats ont été utilisés pour recalculer les enthalpies moyennes de formation de chaque système, figurant dans la dernière colonne des Tableaux 3, 4, 5 et 6 : elles permettent, par comparaison avec les valeurs expérimentales, d'apprécier la précision de l'ensemble de nos mesures.

DISCUSSION

Une comparaison avec les résultats relatifs à la protonation des coordinats étudiés⁶ peut d'abord être envisagée sous l'angle de la règle du parallélisme basicité-stabilité.

On relève l'exception propre au classement de la 2-méthylpipérazine par rapport à la pipérazine, mais comme cela a déjà été observé antérieurement¹, les enthalpies de complexation évoluent pourtant dans l'ordre effectif des basicités : ceci provient vraisemblablement du fait que, dans la protonation, l'effet inductif du groupement méthyl en position 2 est compensé par son effet stérique sur le proton solvaté, ce qui n'est pas le cas pour l'ion Ag^+ , beaucoup moins encombrant.

Cette explication tendrait d'ailleurs à confirmer le rôle prépondérant généralement attribué au solvant dans les équilibres de protonation, mais qui s'estompe lorsque le cation est moins solvaté¹⁰.

Tout empêchement stérique vis à vis de l'ion Ag^+ n'est cependant pas pour autant négligeable. En effet, si les variations d'enthalpies ΔH_n^0 étaient seulement attribuables à des effets électriques, au lieu de celui ici obtenu, on observerait plutôt (en valeur algébrique) l'ordre N-mp<2-mp<p<N-pp. Il est donc intéressant de remarquer qu'en ce qui concerne la formation du premier complexe, les enthalpies ΔH_1^0 augmentent (algébriquement) lorsque l'effet stérique croît.

Quant au deuxième complexe, on remarque que le comportement des systèmes Ag-p, Ag-2-mp, Ag-N-mp se différencie nettement de celui du système Ag-N-pp : l'enthalpie $\Delta H_{1,2}^0$ de ce dernier est en effet la plus basse et pratiquement équivalente à ΔH_1^0 ; il en est d'ailleurs de même de l'entropie $\Delta S_{1,2}^0$ comparativement à ΔS_1^0 .

Une telle observation pourrait susciter l'interprétation suivante : la possibilité, pour le premier complexe des systèmes Ag-p, Ag-2-mp et Ag-N-mp de prendre la forme « bateau »¹⁰, implique un changement de structure lors de la formation du deuxième, d'où une entropie de réaction $\Delta S_{1,2}^0$ relativement élevée par rapport à ΔS_1^0 ; de même, l'enthalpie $\Delta H_{1,2}^0$ est alors supérieure (en valeur algébrique) à l'enthalpie ΔH_1^0 que la forme « bateau » aurait tendance à abaisser.

Par contre, pour le système Ag-N-pp qui n'autorise pas la forme « bateau », il n'y a pas de changement de structure entre le premier et le deuxième complexe : les enthalpies et entropies mises en jeu lors de chaque étape de complexation sont donc sensiblement équivalentes. Notons d'ailleurs que, comme il arrive fréquemment^{3,6,12}, les évolutions particulières des termes enthalpique et entropique se compensent dans l'expression de l'enthalpie libre ΔG_2^0 de ce système.

Une fois de plus, l'on se rend donc clairement compte de la nécessité d'envisager séparément les influences des structures concernées sur ΔH^0 et ΔS^0 respectivement.

BIBLIOGRAPHIE

- 1 G. Berthon, O. Enea et Y. Bokra, Thermochim. Acta, 4 (1972) 441.
- 2 O. Enea, G. Berthon et Y. Bokra, Thermochim. Acta, 4 (1972) 449.
- 3 O. Enea et G. Berthon, C. R. Acad. Sci., C 274 (1972) 1968.
- 4 G. Berthon et O. Enea, Thermochim. Acta, 6 (1973) 57.
- 5 O. Enca et G. Berthon, Thermochim. Acta, 6 (1973) 47.
- 6 O. Enea, K. Houngbossa et G. Berthon, Electrochim. Acta, 17 (1972) 1585.
- 7 G. Berthon et G. Valensi, Bull. Soc. Chim. Fr., (1972) 479.
- 8 G. Berthon et C. Luca, Chim. Anal. (Paris), 53 (1971) 40.
- 9 K. Houngbossa, Thèse de 3e cycle, Poitiers, 1971.
- 10 O. Enca, Thèse d'État, Poitiers, 1972; C.N.R.S. AO 7470.
- 11 G. Schwarzenbach, B. Maissen et H. Ackermann, Helv. Chim. Acta, 35 (1952) 2333.
- 12 G. Berthon, O. Enea et K. Houngbossa, C. R. Acad. Sci., C 273 (1972) 1140.